Exchange rings in which all regular elements are one-sided unit-regular
نویسندگان
چکیده
منابع مشابه
Rings in which elements are the sum of an idempotent and a regular element
Let R be an associative ring with unity. An element a in R is said to be r-clean if a = e+r, where e is an idempotent and r is a regular (von Neumann) element in R. If every element of R is r-clean, then R is called an r-clean ring. In this paper, we prove that the concepts of clean ring and r-clean ring are equivalent for abelian rings. Further we prove that if 0 and 1 are the only idempotents...
متن کاملrings in which elements are the sum of an idempotent and a regular element
let r be an associative ring with unity. an element a in r is said to be r-clean if a = e+r, where e is an idempotent and r is a regular (von neumann) element in r. if every element of r is r-clean, then r is called an r-clean ring. in this paper, we prove that the concepts of clean ring and r-clean ring are equivalent for abelian rings. further we prove that if 0 and 1 are the only idempotents...
متن کاملrings in which elements are the sum of an idempotent and a regular element
let r be an associative ring with unity. an element a in r is said to be r-clean if a = e+r, where e is an idempotent and r is a regular (von neumann) element in r. if every element of r is r-clean, then r is called an r-clean ring. in this paper, we prove that the concepts of clean ring and r-clean ring are equivalent for abelian rings. further we prove that if 0 and 1 are the only idempotents...
متن کاملCommuting $pi$-regular rings
R is called commuting regular ring (resp. semigroup) if for each x,y $in$ R there exists a $in$ R such that xy = yxayx. In this paper, we introduce the concept of commuting $pi$-regular rings (resp. semigroups) and study various properties of them.
متن کاملTwo-Sided Properties of Elements in Exchange Rings
For any element a in an exchange ring R, we show that there is an idempotent e ∈ aR ∩ Ra such that 1 − e ∈ (1 − a)R ∩ R (1 − a). A closely related result is that a ring R is an exchange ring if and only if, for every a ∈ R, there exists an idempotent e ∈ Ra such that 1− e ∈ (1−a)R. The Main Theorem of this paper is a general two-sided statement on exchange elements in arbitrary rings which subs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 2008
ISSN: 0011-4642,1572-9141
DOI: 10.1007/s10587-008-0058-z